A "Stepping Stone" Approach for Obtaining Quantum Free Energies of Hydration.
نویسندگان
چکیده
We present a method which uses DFT (quantum, QM) calculations to improve free energies of binding computed with classical force fields (classical, MM). To overcome the incomplete overlap of configurational spaces between MM and QM, we use a hybrid Monte Carlo approach to generate quickly correct ensembles of structures of intermediate states between a MM and a QM/MM description, hence taking into account a great fraction of the electronic polarization of the quantum system, while being able to use thermodynamic integration to compute the free energy of transition between the MM and QM/MM. Then, we perform a final transition from QM/MM to full QM using a one-step free energy perturbation approach. By using QM/MM as a stepping stone toward the full QM description, we find very small convergence errors (<1 kJ/mol) in the transition to full QM. We apply this method to compute hydration free energies, and we obtain consistent improvements over the MM values for all molecules we used in this study. This approach requires large-scale DFT calculations as the full QM systems involved the ligands and all waters in their simulation cells, so the linear-scaling DFT code ONETEP was used for these calculations.
منابع مشابه
Free energies of binding from large-scale first-principles quantum mechanical calculations: application to ligand hydration energies.
Schemes of increasing sophistication for obtaining free energies of binding have been developed over the years, where configurational sampling is used to include the all-important entropic contributions to the free energies. However, the quality of the results will also depend on the accuracy with which the intermolecular interactions are computed at each molecular configuration. In this contex...
متن کاملComparison of charge models for fixed-charge force fields: small-molecule hydration free energies in explicit solvent.
In molecular simulations with fixed-charge force fields, the choice of partial atomic charges influences numerous computed physical properties, including binding free energies. Many molecular mechanics force fields specify how nonbonded parameters should be determined, but various choices are often available for how these charges are to be determined for arbitrary small molecules. Here, we comp...
متن کاملPredicting hydration free energies with a hybrid QM/MM approach: an evaluation of implicit and explicit solvation models in SAMPL4
The correct representation of solute-water interactions is essential for the accurate simulation of most biological phenomena. Several highly accurate quantum methods are available to deal with solvation by using both implicit and explicit solvents. So far, however, most evaluations of those methods were based on a single conformation, which neglects solute entropy. Here, we present the first t...
متن کاملComputation of Hydration Free Energies Using the Multiple Environment Single System Quantum Mechanical/Molecular Mechanical Method.
A recently developed MESS-E-QM/MM method (multiple-environment single-system quantum mechanical molecular/mechanical calculations with a Roothaan-step extrapolation) is applied to the computation of hydration free energies for the blind SAMPL4 test set and for 12 small molecules. First, free energy simulations are performed with a classical molecular mechanics force field using fixed-geometry s...
متن کاملA hybrid quantum mechanical molecular mechanical method: Application to hydration free energy calculations
A hybrid quantum mechanical molecular mechanical ~QMMM! approach is used to study H3O , H2O, NH4 1 , NH3 , Cl , HCl, F, HF, CH3COO , CH3COOH, Ag 1 and glycine in both zwitterionic and nonzwitterionic forms in water. The free energies of hydration of these species are presented and are shown to compare favorably with experimental values. The difference in water– glycine interaction energy betwee...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The journal of physical chemistry. B
دوره 119 23 شماره
صفحات -
تاریخ انتشار 2015